# CT: Object¶

In Category Theory, an object is a part of a category. It exists to define each end of a morphism.

## Backlinks¶

- Category Theory
- At the core of category theory is, unsurprisingly, the category. A category is a collection of objects and morphisms, where each object has at least an 'identity morphism'. A morphism is an arrow pointing from one object to another. Objects exist as named points to give the morphisms context. Category theory concerns itself with the composition of morphisms within different categories and the different states that are possible.

- CT: Morphism
- In category theory, a morphism is a transformation from one object to another. This can be within a category or between categories.

- CT: Categories
- In Category Theory, A category is a group of objects and morphisms.

- Video Series: Category Theory
- CT: Isomorphism
- A pair of objects is
`isomorphic`

if an isomorphism exists between them. This practically means that objects which are isomorphic to each other are the same.

- A pair of objects is
- Identity Morphism
- A category with a single object is a monoid
- Any category with a single object is a monoid. The object in a monoidal category can have any number of morphisms greater than 1 - the requirement for an identity morphism isn't relaxed.

- Graphs can represent a category
- Categories are collections of objects and morphisms which are easily represented by nodes and edges respectively. While not every graph is a category, every category can be described as a graph. It's also true that any graph can be made into a category.

- The Empty Category